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Pressure segregation methods based on a discrete pressure Poisson
equation. An algebraic approach
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SUMMARY

In this paper, we introduce some pressure segregation methods obtained from a non-standard version of the
discrete monolithic system, where the continuity equation has been replaced by a pressure Poisson equation
obtained at the discrete level. In these methods it is the velocity instead of the pressure the extrapolated
unknown. Moreover, predictor–corrector schemes are suggested, again motivated by the new monolithic
system. Key implementation aspects are discussed, and a complete stability analysis is performed. We end
with a set of numerical examples in order to compare these methods with classical pressure-correction
schemes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At the continuous level, from the Navier–Stokes equations for incompressible flows (the momentum
and continuity equations) a pressure Poisson equation (PPE, from now onwards) can be obtained. An
alternative system to the classical Navier–Stokes equations can be the momentum equation together
with the PPE instead of the continuity equation. Unfortunately, the numerical approximation of
the PPE equation is an involved task due to the presence of third-order derivatives for the velocity
field. In order to facilitate the numerical approximation, a simplified PPE could be considered
by assuming that the divergence and the Laplace operators commute and deleting the viscous
contribution to the PPE. Nevertheless, as it is shown by Gresho and Sani in [1], this alternative
form is not equivalent to the Navier–Stokes equations. Therein, it is shown that the system with

∗Correspondence to: S. Badia, Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), Jordi Girona 1-3,
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352 S. BADIA AND R. CODINA

the simplified PPE admits spurious solutions that are not solutions of the original Navier–Stokes
equations.

We can consider an alternative version of the fully discretized monolithic system that is obtained
at the discrete level. As for the continuous problem, from the discrete momentum and continuity
equations a discrete pressure Poisson equation (DPPE, from now onwards) can be easily obtained.
This leads to a fully discrete monolithic system composed by the DPPE and the discrete mo-
mentum equation. However, it is not our interest to solve this DPPE monolithic problem. The
aim of this paper is to design pressure segregation methods motivated by this DPPE monolithic
problem.

Pressure segregation methods for the incompressible Navier–Stokes equations have become
widely popular since their appearance at the late sixties (see [2, 3]). These methods allow the
uncoupling of the pressure from the velocity components, reducing sensibly the computational
cost. We classify the pressure segregation methods into two families: pressure-correction (PC)
methods and velocity-correction (VC) methods. The concept of PC schemes appeared when trying
to obtain second-order accurate projection methods. In [4], van Kan introduced a second-order
PC method where the pressure in the momentum equation was extrapolated from the value of the
previous time step. In fact, the classical Chorin–Temam projection method can be understood as a
PC scheme with a zero-order extrapolation of the pressure. Methods where the extracted unknown
is the velocity rather than the pressure are very recent. In [5], Guermond and Shen have introduced
first versions of VC methods (VC) obtained at the semi-discrete level (in time).

In this article, we motivate VC methods at the fully discrete level from the DPPE monolithic
system. The algebraic approach allows us to avoid the discussion about the appropriate boundary
conditions and motivates an alternative implementation to the one in [5]. We propose a method
where the pressure is obtained from the DPPE using an extrapolated velocity. After it is computed,
this pressure is used in the momentum equation in order to obtain the velocity.

The system of equations related to the DPPE method is cumbersome. This is why a further
approximation is suggested in order to make the method more appealing from a computational
point of view. This approximation can be understood as an improved version of the one widely
used for PC methods (see [6]).

From PC methods, predictor–corrector methods can be easily obtained. Here, we design a new
predictor–corrector scheme where all the terms are motivated from the DPPE monolithic system.
This is a main difference in comparison to the existing predictor–corrector methods based on PC
schemes (see [7]).

The stabilized version of VC schemes using the orthogonal subscale stabilization method (see
[8]) has also been studied and some possibilities discussed.

We have proved some stability bounds for different schemes. We have compared the inherent
pressure stability of VC methods with that of PC methods. This analysis is similar to that presented
in [9] for PC methods. In fact, the present paper is a continuation of the effort initiated in this
reference to analyse and design robust methods that uncouple the velocity and pressure calculations.

Let us list the main results of the article:

1. Design of VC methods motivated at the discrete level by the DPPE monolithic system.
2. A new implementation of VC methods.
3. Design of predictor–corrector methods motivated by the DPPE monolithic system.
4. Stabilized version of these schemes using orthogonal subscales.
5. Stability analysis for VC methods (with and without stabilization).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:351–382
DOI: 10.1002/fld



PRESSURE SEGREGATION BASED ON A DISCRETE PRESSURE POISSON EQUATION 353

The outline of the paper is as follows. In Section 2, some preliminaries for the continuous and
discrete problems are stated for the monolithic system. In Section 3, VC methods are introduced
and discussed. Section 4 is devoted to a new family of predictor–corrector methods. The stabilized
version of VC schemes is introduced in Section 5. In Section 6, some implementation aspects
are discussed. Section 7 is devoted to the numerical analysis of VC methods. Stability results for
different cases are obtained. The important point is that no reference at all is made to compatibility
conditions between the velocity and pressure interpolating spaces, that is, they do not need to
satisfy any inf–sup condition. Section 8 presents a set of numerical tests that show the behaviour
of these new schemes in comparison with the classical PC methods and, finally, the paper concludes
in Section 9 with some final remarks.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1. The continuous problem

Let � be the domain of Rd occupied by the fluid, where d = 2 or 3 is the number of space
dimensions, �= �� its boundary and [0, T ] the time interval of analysis. The Navier–Stokes
problem consists of finding a velocity u and a pressure p such that

�tu− ��u+ u · ∇u+ ∇ p= f in �, t ∈ (0, T ) (1a)

∇ · u= 0 in �, t ∈ (0, T ) (1b)

u= ud on �, t ∈ (0, T ) (1c)

u= u0 in �, t = 0 (1d)

where � is the kinematic viscosity, f is the force vector, ud defines the Dirichlet boundary value
and u0 is the velocity initial condition.

An alternative form of the Navier–Stokes equations where the continuity equation (1b) is replaced
by a new equation that replaces the mass conservation can also be considered. A PPE that implies
mass conservation can be obtained by taking the divergence of the momentum equation (1a) and
invoking (1c), leading to the system

�tu+ u · ∇u− ��u+∇ p= f (2a)

�p=∇ · (f+ ��u− u · ∇u) (2b)

The pressure boundary condition is obtained by imposing that the normal component of the
pressure gradient is equal to the normal component of the term within parenthesis in the right-hand
side of (2b). As commented below, the term ∇ ·(��u) complicates the finite element approximation
of the PPE equation. We can extract this term from the equation by commuting operators, leading
to a simplified PPE:

�p=∇ · (f− u · ∇u) (3)

Unfortunately, this equation is ill-posed. It can be shown that (2a)–(3) admit extra spurious solutions
that do not satisfy the original Navier–Stokes equations. These spurious solutions satisfy

�t (∇ · u)− ��(∇ · u)= 0 (4)
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which does not necessarily imply ∇ · u= 0 for t ∈ (0, T ). Thus, the false equivalence between the
original continuity equation (1b) and the simplified PPE obtained at the continuous level makes
(2a)–(3) an inappropriate alternative to the original Navier–Stokes equations. The problems arising
when using the simplified PPE are analysed in [1].
2.2. Weak form

To pose the weak form of problem (1), we need the functional spaces V0=H1
0(�) and Q=

L2(�)/R. As usual, L2(�) denotes the space of square integrable functions endowed with the
scalar product (·, ·). H1(�) is the space of functions in L2(�) with first derivatives also in L2(�),
whereas H1

0 (�) is the subspace of H1(�) of functions vanishing on ��. Its dual will be denoted
by H−1(�) and the duality pairing between H−1(�) and H1

0 (�) by 〈·, ·〉. A bold character is used
for the vector counterpart of these spaces.

For the evolutionary Navier–Stokes equations we also need to introduce (V0)t ≡ L2(0, T ;V0)

and Qt ≡ L1(0, T ;Q), where L p(0, T ; X) is the space of time-dependent functions in a normed
space X such that

∫ T
0 ‖ f ‖pX dt<∞, 1�p<∞. Then, the weak form of (1) with homogeneous

boundary conditions (for simplicity) consists of finding u∈ (V0)t and p ∈Qt such that:

(�tu, v)+ �(∇u,∇v)+ (u · ∇u, v)+ 〈∇ p, v〉= 〈f, v〉 ∀v∈V0 (5a)

〈∇q,u〉= 0 ∀q ∈Q (5b)

The symbol (·, ·) has been used also for the convective term even though u · ∇u does not belong
to L2(�). In these equations, we have assumed that the force vector belongs to H−1(�).

If we want to obtain the weak form of (2) with homogeneous Dirichlet boundary condi-
tions, we need some more regularity in the solution. Let us consider the functional spaces
(Ṽ0)t ≡ L2(0, T ; Ṽ0) and Q̃t ≡ L2(0, T ; Q̃), with Ṽ0≡H1

0(�)∩H2(�) and Q̃≡ H1(�)/R. Now,
we assume that the force vector belongs toL2(�). The weak form consists of finding [u, p]∈(Ṽ0)t×
(Q̃)t such that

(�tu, v)+ �(∇u,∇v)+ (u · ∇u, v)+ (∇ p, v)= (f, v) (6a)

(∇ p,∇q)= (f− u · ∇u+ ��u,∇q) (6b)

for all [v, q] ∈ Ṽ0× Q̃. We could recover the regularity requirements of the previous formulation
by taking the pressure test function in H2(�). However, either this choice or (6b) imply the
need to construct finite element approximations to H2(�), which is an involved task (at least for
conforming interpolations, as we consider throughout). Thus, the finite element discretization of the
PPE (6b) will not be studied. We could try to circumvent the regularity assumptions neglecting the
diffusive term in (6b). Unfortunately, the simplified Poisson equation is ill-posed, as commented
above.

2.3. Discrete problem

In this section, we study the discretization of (1). For the time discretization we propose the
trapezoidal rule and backward differencing schemes (BDF). For the spatial approximation we will
use in this section the standard Galerkin finite element method. However, no reference will be made
to the need to satisfy any compatibility condition between the velocity and pressure finite element
spaces. The introduction of stabilization techniques is deferred until Section 5, where a stabilization
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technique designed to allow equal velocity–pressure interpolation and convection-dominated flows
will be presented.

2.3.1. Monolithic time discretization. Let us introduce some notations that we will use throughout
the work. Consider a uniform partition of the time interval of size �t , and let us denote by f n the
approximation of a time-dependent function f at time level tn = n�t . For a parameter �∈ [0, 1],
we will denote

f n+�= � f n+1 + (1− �) f n

� f n+1≡ �(1) f n+1= f n+1 − f n

�(i+1) f n+1= �(i) f n+1 − �(i) f n, i = 1, 2, 3, . . .

The discrete operators �(i+1) are centred. We will also use the backward difference operators

Dk f
n+1= 1

�k

(
f n+1 −

k−1∑
i=0

�ki f
n−i
)

where �k and �ik for i = 0, . . . , k− 1 are scalar values that define the time discretization. For a kth
order BDF time discretization (with k= 1.3) we have

D1 f
n+1= � f n+1= f n+1 − f n

D2 f
n+1= 3

2 ( f
n+1 − 4

3 f
n + 1

3 f
n−1)

D3 f
n+1= 11

6 ( f n+1 − 18
11 f

n + 9
11 f

n−1 − 2
11 f

n−2)

We will also use the backward extrapolation operators

f̃ n+10 = 0

f̃ n+11 = f n

f̃ n+12 = 2 f n − f n−1

or, in general,

f̃ n+1i = f n+1 − �(i) f n+1= f n+1 + O(�t i ), i = 0, 1, 2, . . . (7)

For the time integration of problem (5) we consider two types of finite difference approximations.
The first is the generalized trapezoidal rule, which consists of solving the following problem:
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from known un , find un+1 ∈V0 and pn+1 ∈Q such that(
1

�t
D1un+1 + un+� · ∇un+�, v

)
+ �(∇un+�,∇v)− (pn+1,∇ · v)=〈fn+�, v〉 (8a)

(q,∇ · un+�)= 0 (8b)

for all [v, q] ∈V0×Q. The force term fn+� in (8a) and below has to be understood as the time
average of the force in the interval [tn, tn+1], even though we use a superscript n+� to characterize
it. The pressure value computed here has been identified as the pressure evaluated at tn+1, although
this is irrelevant for the velocity approximation. The values of interest of � are �= 1

2 , corresponding
to the second-order Crank–Nicolson scheme, and �= 1, which corresponds to the backward Euler
method.

Backward differencing (BDF) time integration schemes will also be considered for the methods
proposed later on. The first-order one (BDF1) coincides with the backward Euler method. BDF1
and the second-order scheme BDF2 areA-stable. Higher-order methods do not keep this interesting
property anymore, limitation known as second Dahlquist barrier. Nevertheless, BDF3 holds a less
demanding A(�)-stability property, with �= 86◦, that makes these methods still appropriate. See
[10] for a complete exposition of BDF methods and their stability properties.

For the second-order scheme BDF2, u1 can be computed from the backward Euler method,
whereas for n�1 the unknowns un+1 ∈V0 and pn+1 ∈Q are found by solving the problem(

1

�t
D2un+1 + un+1 · ∇un+1, v

)
+ �(∇un+1,∇v)− (pn+1,∇ · v)=〈fn+1, v〉

(q,∇ · un+1)= 0

for all [v, q] ∈V0×Q. The BDF3 also requires u2 for being initialized.
For a kth order BDF method, the unknowns un+1 ∈V0 and pn+1 ∈Q, with n+ 1�k, are found

by solving the problem(
1

�t
Dkun+1 + un+1 · ∇un+1, v

)
+ �(∇un+1,∇v)− (pn+1,∇ · v)=〈fn+1, v〉 (9a)

(q,∇ · un+1)= 0 (9b)

for all [v, q] ∈V0×Q.
The backward Euler method will be used for the first-order PC methods in time, whereas for

second-order methods we will consider both the Crank–Nicolson and the BDF2 schemes. The BDF3
time integration scheme can be used for third-order VC methods with appropriate extrapolations
in order to reach a third-order VC method. However, as we note below, these methods become
unstable in some cases and have not been considered in the numerical experimentation.

2.3.2. Finite element discretization. Let �h denote a finite element partition of the domain � of
diameter h, from which we construct the finite element spaces Qh and Vh,0, approximations to
Q and V0, respectively. The former is made up with continuous functions and the other with
continuous vector functions verifying the homogeneous Dirichlet boundary conditions. In the
following, finite element functions will be identified with a subscript h.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:351–382
DOI: 10.1002/fld



PRESSURE SEGREGATION BASED ON A DISCRETE PRESSURE POISSON EQUATION 357

The discrete problem is obtained by approximating u and p. We assume that unh and pnh
are constructed using the standard finite element interpolation from the nodal values. These are
solutions of the nonlinear algebraic system

M
1

�t
DkUn+1 + K(Un+1)Un+1 + GPn+1= Fn+1 (10a)

DUn+1= 0 (10b)

where Un+1 and Pn+1 are the arrays of nodal values for un+1h and pn+1h , respectively, obtained
from the monolithic system at the time step n + 1. Let us recall the matrices needed for the fully
discrete problem. If we denote the node indexes with superscripts a, b, the space indexes with
subscripts i , j , and the standard shape function of node a by Na , the components of the arrays
involved in these equations are

Mab
i j = (Na, Nb)�i j (�i j is the Kronecker �)

K(Un+�)abi j = (Na,un+�
h · ∇Nb)�i j + 1

2 (N
a, (∇ · un+�

h )Nb)�i j + �(∇Na,∇Nb)�i j

Gab
i = (Na, �i Nb)

Dab
j = (Na, � j N

b)

Fai =〈Na, fi 〉

It is understood that all the arrays are matrices (except F, which is a vector) whose components are
obtained by grouping together the left indexes in the previous expressions (a and possibly i) and
the right indexes (b and possibly j). Likewise, system (10) needs to be modified to account for the
Dirichlet boundary conditions (matrix G can be replaced by −Dt when this is done). Observe also
that we have used the skew-symmetric form of the convective term, which yields the convective
contribution to matrix K(Un+�) skew symmetric.

2.3.3. A discrete pressure Poisson equation. At the continuous level, the PPE is not an appropriate
equation to be discretized as it has been commented above. Here, we propose a DPPE obtained in a
matrix setting from the fully discretized form of the classical incompressible Navier–Stokes equa-
tions, after multiplying (10a) by �tDM−1 and invoking (10b) in the resulting equation. Replacing
the discrete continuity equation (10b) by the DPPE, the equivalent monolithic scheme is

M
1

�t
DkUn+1 + K(Un+1)Un+1 + GPn+1= Fn+1 (11a)

�k�tDM−1GPn+1= �k�tDM−1(Fn+1 − K(Un+1)Un+1)+ D

(
k−1∑
i=0

�ikUn−i
)

(11b)

for a kth order BDF time discretization. The parameters �k and �ik for i = 0, . . . , k−1 that define this
time discretization have been introduced in Section 2.3.1 for k= 1.3. Note that matrix DM−1G is
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a discrete version of the Laplacian operator. Thus, Equation (11b) is a discretization of the Poisson
equation, although not in the most usual way.

Obviously, for the obtention of scheme (11) proposed herein, no extra regularity conditions are
required, a main difference in comparison to the continuous PPE (2b). This scheme, which has
been obtained after algebraic manipulation, is equivalent to the original monolithic discretized
scheme (10). Furthermore, boundary conditions arise naturally from the original scheme.

2.3.4. Approximation of DM−1G. A straightforward implementation of (11) is not affordable in
most cases. Implementation aspects for this scheme are studied later. But the critical point is
the approximation to the discrete Laplace operator DM−1G, which is a dense matrix in general.
It would be computationally expensive even using a diagonal matrix M. At this point, a further
approximation can be introduced in order to avoid this system matrix. As it is typically done for
PC methods, we can approximate

DM−1G ≈ L with components Lab=−(∇Na,∇Nb) (12)

where the matrix L is the standard approximation to the Laplace operator, only possible when
continuous pressure interpolations are employed. Here, we propose an enhanced approximation

DM−1GPn+1= LPn+1 + (DM−1G− L)Pn+1 ≈ LPn+1 + (DM−1G− L)P̃n+1p (13)

where P̃n+1p is a pth order backward extrapolation of Pn+1 obtained from previous known values
(see (7)). This new approximation couples space and time errors, yielding better accuracy. Using
(13) in the DPPE we get

�k�tL(Pn+1 − P̃n+1p )= �k�tDM−1(Fn+1 − K(Un+1)Un+1 − GP̃n+1p )+ D

(
k−1∑
i=0

�ikUn−k
)

(14)

which is more appealing than (11b) from a computational point of view. This new scheme is
appropriate in order to obtain pressure segregation and predictor–corrector methods.

3. VELOCITY-CORRECTION METHODS BASED ON A DPPE

3.1. Formulation of the schemes

Instead of obtaining a pressure segregation method from the monolithic system (10), we start
from system (11), where the continuity equation has been replaced by the DPPE. Furthermore, we
consider a method where the extrapolated variable is the velocity instead of the pressure. In a first
step, the pressure is obtained from the approximated DPPE (14) using a backward extrapolation of
order q of the velocity Un+1, denoted by Ũn+1

q . Once the pressure is computed, Un+1 is obtained
from the momentum equation. For a kth order method using BDF, the split scheme reads as
follows:

�k�tDM−1GPn+1= �k�tDM−1(Fn+1 − K(Ũn+1
q )Ũn+1

q )+ D

(
k−1∑
i=0

�ikUn−k
)

(15a)

M
1

�t
(DkUn+1)+ K(Un+1)Un+1 + GPn+1= Fn+1 (15b)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:351–382
DOI: 10.1002/fld



PRESSURE SEGREGATION BASED ON A DISCRETE PRESSURE POISSON EQUATION 359

with q = k − 1. Invoking approximation (13) for DM−1G we obtain the following system:

�k�tL(Pn+1 − P̃n+1p )= �k�tDM−1(Fn+1 − K(Ũn+1
q )Ũn+1

q − GP̃n+1p )+ D

(
k−1∑
i=0

�ikUn−k
)

(16a)

M
1

�t
(DkUn+1)+ K(Un+1)Un+1 + GPn+1= Fn+1 (16b)

with q = p= k − 1. For instance, we can obtain a first-order method (in time) taking k= 1 and
q = p= 0

�tLPn+1= �tDM−1Fn+1 + DUn (17a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1 (17b)

We can obtain second-order accuracy in time with k= 2 and q = p= 1. In this case, the system
to be solved is

2
3�tL(Pn+1 − Pn)= 2

3�tDM−1(Fn+1 − K(Un)Un − GPn)+ D( 43Un − 1
3Un−1) (18a)

M
1

2�t
(3Un+1 − 4Un + Un−1)+ K(Un+1)Un+1 + GPn+1= Fn+1 (18b)

Remark 1
An interesting feature of these methods is that the splitting error is related to the accuracy of the
velocity instead of the pressure (as it happens for PC methods). This is an advantage because it
is known from the convergence analysis of different pressure segregation methods that the error
estimates for the velocity are sharper than those for the pressure.

Similarly, third-order methods can be obtained with k= 3, that is a BDF3 time integration
scheme, and q = p= 2. Unfortunately, numerical experimentation dictates that this method is only
conditionally stable, as it happens for third-order PC methods.

Remark 2
Numerical experimentation dictates that VC methods are unconditionally stable for q�1 (this is
proved for some schemes in Section 7). The instabilities shown by higher-order schemes seem to
be a common feature for different sorts of methods that segregate the calculation of the velocity
and pressure. This behaviour has been pointed out for PC methods in [11]. This misbehaviour is
also commented in [5] for a different version of VC methods without any definitive conclusion.

3.2. Equivalent stabilized monolithic formulation

As for PC methods in [6], we could rewrite this system in a monolithic format in order to identify
the perturbation terms introduced by the splitting. Taking the difference between (16b) after being
multiplied by �tDM−1 and (16a), we get the following equivalent system:

M
1

�t
DkUn+1 + K(Un+1)Un+1 + GPn+1= Fn+1 (19a)

DUn+1 + ��tB(Pn+1 − P̃n+1p )+ �tDM−1(K(Un+1)Un+1 − K(Ũn+1
q )Ũn+1

q )= 0 (19b)
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where B :=DM−1G − L and �= 1 if approximation (13) is used and 0 otherwise. The perturbed
system obtained in this case is different to the one obtained for PC methods (see [6]), the main
advantage being that the momentum equation is not perturbed anymore. This splitting is only
introducing a perturbation in the continuity equation. The term �tB(Pn+1− P̃n+1p ) (that also appears
in the classical PC scheme with approximation (12)) arises from approximation (13) and is not a
splitting error.

Remark 3
The only term due to the splitting is �tDM−1(K(Un+1)Un+1 − K(Ũn+1

q )Ũn+1
q ), which is formally

of order O(�tq+1).

4. PREDICTOR–CORRECTOR METHODS BASED ON A DPPE

4.1. Schemes with a single iterative loop

Straightforward from the monolithic scheme (11), where the mass conservation is imposed by
the DPPE, we can design new predictor–corrector methods. Denoting by a superscript i the i th
iteration of the scheme, the resulting predictor–corrector method is, for k= 1 and using a Picard
linearization of the convective term

�tDM−1GPn+1,i+1= �tDM−1(Fn+1 − K(Un+1,i )Un+1,i )+ D(Un) (20a)

M
1

�t
(Un+1,i+1 − Un)+ K(Un+1,i )Un+1,i+1 + GPn+1,i+1= Fn+1 (20b)

or, when using approximation (13),

�tL(Pn+1,i+1 − Pn+1,i )= �tDM−1(Fn+1 − K(Un+1,i )Un+1,i − GPn+1,i )+ D(Un) (21a)

M
1

�t
(Un+1,i+1 − Un)+ K(Un+1,i )Un+1,i+1 + GPn+1,i+1= Fn+1 (21b)

These methods have to be properly initialized, that is, to say, we have to start the process with
a splitting error at least of the same order as the scheme. Thus, for the first-order methods
we could take Un+1,0= Ũn+1

q and Pn+1,0= P̃n+1p , with q = p= 0. However, it is better to use
q = p= 1, starting with a second-order splitting error. This does not imply a significant additional
computational cost and improves the initial guess of the iterative process.

In this method, all the terms are motivated from the monolithic version of the problem, a
difference with some predictor–corrector methods based on PC schemes (see [7]). Thus, from the
DPPE version of the monolithic problem a predictor–corrector scheme naturally arises, while it
does not occur so for the typical monolithic version.

The second-order method using BDF2 is

2
3�tL(Pn+1,i+1 − Pn+1,i )= 2

3�tDM−1(Fn+1 − K(Un+1,i )(Un+1,i )− GPn+1,i )

+D( 43Un − 1
3Un−1) (22a)

M
1

2�t
(3Un+1,i+1 − 4Un + Un−1)+ K(Un+1,i )Un+1,i+1 + GPn+1,i+1= Fn+1 (22b)

with the appropriate initializations Un+1,0= Ũn+1
q and Pn+1,0= P̃n+1p , with q = p= 1.
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In these schemes velocity and pressure computations are uncoupled. The iterative loop to couple
velocity and pressure has been used also for a Picard linearization of the convective term in the
momentum equation, although there is the possibility to use nested loops. This alternative is studied
later.

As for PC schemes, we can analogously obtain the perturbed monolithic version of the predictor–
corrector schemes (20) and (21). We have

M
1

�t
(Un+1,i+1 − Un)+ K(Un+1,i+1)Un+1,i+1 + GPn+1= Fn+1 (23a)

DUn+1,i+1 + �t�B(Pn+1,i+1 − Pn+1,i )

+ �tDM−1(K(Un+1,i )Un+1,i+1 − K(Un+1,i )Un+1,i )= 0 (23b)

where �= 1 when using approximation (13) and �= 0 otherwise. The perturbation terms disappear
as the iterative procedure converges, tending to the solution of the monolithic system (10).

In [12] and [13] PC methods and their predictor–corrector counterparts have been understood
as incomplete block LU factorizations of the monolithic matrix. Similarly, the previous predictor–
corrector method can be interpreted as a Block Gauss–Seidel iterative solver applied to the mono-
lithic matrix.

A third-order predictor–corrector method could also be considered using BDF3 as time inte-
gration scheme. Furthermore, in order to start with a third-order splitting error, the methods have
to be initialized with second-order extrapolations (q = p= 2). In this case, the instability of the
third-order VC method is overcome by the iterative process.

The convergence of these methods towards the monolithic system is verified in Section 8 using
numerical experimentation.

4.2. Schemes with nested iterative loops

Instead of treating the nonlinearity with the same loop as for the coupling of variables, we could
design a scheme using nested loops, an outer loop for the coupling and an inner loop for the
nonlinearity. For the BDF1 time integration scheme with approximation (13), this new system
could be written as

�tL(Pn+1,i+1 − Pn+1,i )= �tDM−1(Fn+1 − K(Un+1,i )Un+1,i − GPn+1,i )+ D(Un) (24a)

M
1

�t
(Un+1,i+1 − Un)+ K(Un+1,i+1)Un+1,i+1 + GPn+1,i+1= Fn+1 (24b)

where the superscript i denotes the i th iteration of the outer loop. The momentum equation has
not been linearized yet.

Similarly, using BDF2 for the time integration we would have the scheme

2
3�tL(Pn+1,i+1 − Pn+1,i )= 2

3�tDM−1(Fn+1 − K(Un+1,i )Un+1,i − GPn+1,i )

+D( 43Un − 1
3Un−1) (25a)

1

2�t
(3Un+1,i+1 − 4Un + Un−1)+ K(Un+1,i+1)Un+1,i+1 + GPn+1,i+1= Fn+1 (25b)
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These predictor–corrector schemes could seem more expensive than the methods introduced in
the previous section. However, a faster convergence of the predictor–corrector loop could make
them interesting.

Identifying Pn+1,i as P̃n+1p , and Un+1,i as Ũn+1
q , the system to be solved at each iteration

is equivalent to the split method (18) proposed here taking as approximation for the unknown
variables the solution of the previous outer iteration.

5. STABILIZED VELOCITY-CORRECTION METHODS

In this section, we consider the stabilization of the previous methods using the orthogonal subgrid
scale (OSS) finite element method described in detail in [8].

Let us formulate the OSS formulation for problem (9a)–(9b). The idea is to add a least-squares
form of the component of the convective and pressure gradient terms orthogonal to the velocity
finite element space without boundary conditions. Let Ph be the L2 projection onto this space.
The term to be added to the discrete variational form of the problem is

(P⊥h (un+1h · ∇vn+1h + ∇qn+1h ), �P⊥h (un+1h · ∇un+1h +∇ pn+1h ))

= (un+1h · ∇vn+1h +∇qn+1h , �P⊥h (un+1h · ∇un+1h +∇ pn+1h )) (26)

where � is the stabilization parameter on which the formulation depends, that we compute as

�=
(
c1

�

h2
+ c2
|un+1h |

h

)−1
(27)

where c1 and c2 are algorithmic constants. Both in (26) and (27) the advection velocity un+1h
is assumed to be known. It can be taken as a value computed in a previous iteration within an
iterative loop or as an extrapolation from velocity values at previous time steps. Note that in
(27) the Euclidean norm of this velocity appears, and therefore, � needs to be computed at each
integration point.

Adding (26) to the discrete counterpart of (9a)–(9b) leads to the following stabilized problem:
find un+1h ∈Vh,0 and pn+1h ∈Qh such that

(
1

�t
Dku

n+1
h + un+1h · ∇un+1h , vh

)
+ �(∇un+1h ,∇vh)− (pn+1h ,∇ · vh)

+ (un+1h · ∇vn+1h , �P⊥h (un+1h · ∇un+1h +∇ pn+1h ))=〈fn+1, vh〉 (28a)

(qh,∇ · un+1h )+ (∇qn+1h , �P⊥h (un+1h · ∇un+1h +∇ pn+1h ))= 0 (28b)

for all [vh, qh] ∈Vh,0×Qh . Our objective in the remaining of this section is to extend the previous
VC methods to include the OSS stabilization we have just described.
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5.1. Matrix version of the stabilized monolithic system

We start writing the orthogonal projection of the convective and pressure gradient terms as

P⊥h (un+1h · ∇un+1h + ∇ pn+1h )= un+1h · ∇un+1h + ∇ pn+1h − yn+1h

where yn+1 is the projection of these terms onto the finite element space, that is,

(yn+1h , vh)= (un+1h · ∇un+1h + ∇ pn+1h , vh) ∀vh ∈Vh (29)

From these expressions it is easily checked that the discrete variational problem (28) together with
the projection equation (29) lead to the nonlinear algebraic system

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1

+Suu(U
n+1)Un+1 + Sup(U

n+1)Pn+1 − Suy(U
n+1)Yn+1= Fn+1 (30a)

DUn+1 + SppPn+1 + Spu(U
n+1)Un+1 − SpyYn+1= 0 (30b)

MYn+1 − C(Un+1)Un+1 − GPn+1= 0 (30c)

where Y is an array with the unknown nodal values of y. We have adopted a BDF1 scheme in time
in order to simplify the exposition. Extension to other time integration schemes is straightforward.
In the notation used above, we have introduced the new stabilization matrices:

Suu(U
n+1)abi j = (�un+1h · ∇Na,un+1h · ∇Nb)�i j

Sup(U
n+1)abi = (�un+1h · ∇Na, �i Nb)

Suy(U
n+1)abi j = (�un+1h · ∇Na, Nb)�i j

Spp
ab= (�∇Na,∇Nb)

Spu(U
n+1)abj = (�� j N

a,un+1h · ∇Nb)

Spy
ab
j = (�� j N

a, Nb)

C(Un+1)abi j = (Na,un+1h · ∇Nb)�i j

Stabilized PC and predictor–corrector systems from system (30) have been obtained in [7]. The
enhanced stability properties of these methods have been fully discussed in [6].
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5.2. Stabilized velocity-correction system

Again, we can obtain a DPPE from the stabilized monolithic system (30). Instead of (11b) what
we now obtain, for k= 1, is

(�tDM−1G− Spp)P
n+1 = �tDM−1(Fn+1 − K(Un+1)Un+1 − Suu(U

n+1)Un+1

−Sup(U
n+1)Pn+1 + Suy(U

n+1)Yn+1)+ DUn

+Spu(U
n+1)Un+1 − SpyYn+1 (31)

We need to make some further approximations in order to obtain a computationally appealing
stabilized VC system. As in Section 3, the velocity in the right-hand side of (31) is extrapolated.
Now, this extrapolation is needed not only for the viscous and convective term, but also for the
stabilization terms associated with the momentum and continuity equations. Further, we need to
extrapolate the projection array Y. It has been shown in [14, 15] that by treating the projection
term explicitly for the monolithic system even better stability results are obtained. In Section 8,
the orthogonal projection has been treated explicitly for VC methods. For VC predictor–corrector
schemes, this projection is treated implicitly due to the fact that its computation is inside the
external loop. In the worst case, the error induced by these extrapolations is of order O(��t). If
we assume that ��C�t , we do not spoil the accuracy for first- and second-order methods.

For the momentum equation no assumptions are required. Thus, the stabilized version of system
(15) is

(�tDM−1G− Spp)P
n+1 = �tDM−1(Fn+1 − K(Ũn+1

q )Ũn+1
q − Suu(Ũ

n+1
q )Ũn+1

q

−Sup(Ũ
n+1
q )P̃n+1p + Suy(Ũ

n+1
q )Yn)+ DUn

+Spu(Ũ
n+1
q )Ũn+1

q − SpyYn (32a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1

+Suu(U
n+1)Un+1 + Sup(U

n+1)Pn+1 − Suy(U
n+1)Yn = Fn+1 (32b)

MYn+1 − C(Un+1)Un+1 − GPn+1= 0 (32c)

where we have adopted a BDF1 time integration scheme. At this point, approximation (13) can
be applied in order to avoid dealing with DM−1G.

5.3. Stabilized predictor–corrector scheme

As shown in Section 4, the monolithic system solution can be obtained using a predictor–corrector
method, interpreted as a block Gauss–Seidel iterative procedure. Using similar arguments to those
used for the VC method presented above, we straightforwardly get the stabilized version of the
predictor–corrector system (20) by iterating over (32), with inner or outer iteration loops (as in
Section 4).
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6. IMPLEMENTATION ASPECTS

At this point, we discuss how to treat non-homogeneous boundary conditions when using VC
methods. For the sake of clarity we use a BDF1 time integration scheme and neglect the stabilization
terms.

Let us introduce some new notation. Given an array X̃ with all the nodal values of an unknown
x, we split this array in two parts, X associated with free nodes and Xd associated with the nodes
belonging to the Dirichlet boundary for the velocity, that is,

X̃= [X, Xd]T

Furthermore, for every matrix Ã=[Ãab], a and b being nodes of the mesh, we define the block
A=[Aab], where a and b are free nodes, and Ad= [Aab

d ], where a is a free node and b a fixed
node. In all cases, fixed or free is understood with respect to the velocity unknown.

The discrete momentum equation for non-homogeneous Dirichlet boundary conditions reads

M
1

�t
Un+1 + K(Un+1)Un+1 + GPn+1

= Fn+1 −Md
1

�t
(Un+1

d − Un
d)− Kd(U

n+1)Un+1
d +M

1

�t
Un

=: Fn+1+ (33)

where F+ accounts for the force terms together with Dirichlet boundary conditions and time
integration terms.

On the other hand, with the notation introduced above, we can rewrite the discrete continuity
equation as

DUn+1= − DdUn+1
d (34)

Multiplying (33) by �tM−1G and invoking (34) we get

�tDM−1GPn+1=DM−1(Fn+1+ − K(Ũn+1
q )Ũn+1

q )+ DdUn+1
d + DUn (35)

where we have extrapolated Un+1 in order to obtain the system to be solved for the VC system.
At this point, we are able to use approximation (13).

In order to solve system (33)–(35), we introduce an auxiliary nodal array Xn+1, obtained from
the following system:

MXn+1= Fn+1+ − K(Ũn+1
q )Ũn+1

q

This array allows us to write equation (35) as

�tDM−1GPn+1=DXn+1 + DdUn+1
d + DUn

We summarize the implementation of this VC method in a compact manner in Box 1, both
with approximation (13) (�= 1) and without this approximation (�= 0). A simple fixed point
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Box 1. Velocity-correction algorithm.

• Solve MXn+1=Fn+1+ − K(Ũn+1
q )Ũn+1

q − �GP̃n+1
p .

• Add X̃
n+1=[Xn+1;0]T + [Un;Un+1

d ]T.
IF �= 0:

• Solve �tDM−1GPn+1= D̃X̃
n+1

.

ELSE:

• Solve �tLPn+1= D̃X̃
n+1 + �tLP̃

n+1
p .

END IF

• Set Un+1,0=Un and i = 0.

DO UNTIL CONVERGENCE:

• Solve [ 1�t M+ K(Un+1,i )]Un+1,i+1=Fn+1+ −GPn+1.
• Set i ← i + 1.

END DO

method has been used to linearize the convective term. The implementation of the rest of the
predictor–corrector methods presented is straightforward, as well as the implementation of their
stabilized versions.

Remark 4
We end this section with a comment about the system matrix DM−1G. This matrix is dense when
a consistent matrix M is used. The obtention of this matrix is only computationally feasible when
using a diagonal matrix M. However, for iterative solvers where the system matrix is not explicitly
required and only matrix–vector multiplications are needed, DM−1G can be treated without any
extra approximation. Each matrix–vector product implies to solve a linear system with matrix M.

7. STABILITY ANALYSIS OF VELOCITY-CORRECTION METHODS

In this section, we present a complete set of stability results for the original DPPE VC schemes
proposed in this paper. The key aspects of the analysis are:

• To identify the inherent stability related to VC methods.
• The fact that stability properties are weaker for more accurate schemes.

We analyse VC methods using BDF1 and Crank–Nicolson time integration schemes. For simplicity
in the exposition we will identify the methods as BDF1-Uq -Pp, q being the order of the velocity
extrapolation and p the order of the pressure extrapolation. Similarly, for the Crank–Nicolson
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scheme we will use CN-Uq -Pp. The parameters q and p will take the values 0 and 1 for BDF1
and p= q = 1 for Crank–Nicolson.

Let us start introducing some additional notation. If X, Y are arrays, {Xn}n= 0,1,...,N is a sequence
of arrays of N + 1 terms and A a symmetric positive semi-definite matrix, we define

(X, Y)A := X · AY

‖X‖A := (X · AX)1/2

‖Y‖−A := sup
X�=0

Y · X
‖X‖A (here A is assumed to be positive definite)

{Xn} ∈ �∞(A) ⇐⇒ ‖Xn‖A�C<∞ ∀n= 0, 1, . . . , N

{Xn} ∈ �p(A) ⇐⇒
N∑

n=0
�t‖Xn‖pA�C<∞, 1�p<∞

Here and in the following, C denotes a positive constant, not necessarily the same at different
appearances. Moreover, we denote by N =[T/�t].

A remark is needed when A=K. This matrix is not symmetric, but it has the contribution from
the convective term, which is skew symmetric, and the contribution from the viscous term, Kvisc,
which is symmetric and positive definite. We will simply write U · K(U)U=U · KviscU≡‖U‖2K.

These definitions will allow us to express our stability results in a compact manner.
For obtaining stability bounds in this section the basic assumption in all the cases will be that

N∑
n=0

�t‖Fn‖2M�C<∞ (36)

for all �t>0, that corresponds to requiring f∈ L2(0, T ;L2(�)) for the continuous problem. Apart
from this, no other regularity assumptions will be required.

The main stability results for the different VC methods analysed in this section have been
highlighted in boxes.

7.1. Stability of methods using BDF1

The first scheme to be studied is the simplest BDF1-U0-P0, together with the scheme BDF1-
U0 without pressure extrapolation, that is to say, without making use of approximation (13). As
before, we will distinguish both possibilities according to the parameter �, and we will denote the
resulting methods, by BDF1-U0-(P0). For these methods, we will obtain the following stability
results:

Stability of BDF1-U0-(P0):

{Un} ∈ �∞(M) ∩ �2(K), {√�tM−1K(Un)Un} ∈ �2(M), {√�tPn} ∈ �2(�B)
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Recall that matrix B is defined as B=DM−1G−L. This estimate is optimal for the velocity. The
stability for the pressure is certainly not optimal, but the important point is that we will obtain it
without relying on the classical inf–sup condition for the velocity–pressure interpolation. Observe
also that this stability is lost when �= 0.

In the previous estimate we have also displayed the additional control we have on the norm of
the viscous plus convective terms.

First, let us write the scheme to be analysed as

�t[�L+ (1− �)DM−1G]Pn+1= �tDM−1Fn+1 + DUn (37a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1 (37b)

where, as before, �= 1 using approximation (13) and �= 0 otherwise. Instead of analysing (37)
we will work with an equivalent form of this method, introducing an intermediate velocity, as for
PC methods. In this new format we have

M
1

�t
(Ũn+1 − Un)+ GPn+1= Fn+1 (38a)

DŨn+1 + �t�BPn+1= 0 (38b)

M
1

�t
(Un+1 − Ũn+1)+ K(Un+1)Un+1= 0 (38c)

Thus, the intermediate velocity we have introduced is not divergence-free when approximation
(13) is used (�= 1). When �= 0, the second term in the left-hand side of (38b) disappears together
with the stability results associated with the norm ‖ · ‖�B.

The stability bounds for the BDF1-U0-P0 and BDF1-U0 methods are summarized in the next
theorem.

Theorem 1
The following stability estimates hold for the BDF1-U0-(P0) method:

max
0�n�N

{‖Un‖2M} +
N∑

n=1
�t{‖Un‖2K + ‖

√
�tM−1K(Un)Un‖2M + ‖

√
�tPn‖2�B}�C

for all �t>0.

Proof
Taking the inner product of (38a) with 2�tŨn+1 and using the identity

(2a, a − b) := a2 − b2 + (a − b)2

we get

‖Ũn+1‖2M − ‖Un‖2M + ‖Ũn+1 − Un‖2M + 2�tŨn+1 · GPn+1= 2�tŨn+1 · Fn+1 (39)

On the other hand, (38c) can be reordered in order to obtain

Un+1 + �tM−1K(Un+1)Un+1= Ũn+1 (40)
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Squaring both terms of this equation with the inner product (·, ·)M it is found that

‖Un+1‖2M + 2�t‖Un+1‖2K + ‖�tM−1K(Un+1)Un+1‖2M=‖Ũn+1‖2M (41)

Multiplying (40) by 2�tFn+1 we get

2�tUn+1 · Fn+1 − 2�tŨn+1 · Fn+1 + 2�t2M−1K(Un+1)Un+1 · Fn+1= 0 (42)

Adding up (39), (41) and subtracting (42) we obtain

‖Un+1‖2M − ‖Un‖2M + ‖Ũn+1 − Un‖2M + 2�t‖Un+1‖2K + ‖�tM−1K(Un+1)Un+1‖2M
+ 2�tŨn+1 · GPn+1

= 2�tUn+1 · Fn+1 + 2�t2M−1K(Un+1)Un+1 · Fn+1

��t‖Fn+1‖2−K + �t‖Un+1‖2K + 2�t2‖M−1Fn+1‖2M + 1
2‖�tM−1K(Un+1)Un+1‖2M (43)

From (38b) we can bound the term involving the pressure, obtaining

2�tŨn+1 · GPn+1=−2�tPn+1 · DŨn+1= 2�t2‖Pn+1‖2�B (44)

Replacing (40) in (39), and summing from n= 0 to N − 1 (or up to any arbitrary time level), we
find that

‖UN‖2M +
N∑

n=1
‖Ũn − Un−1‖2M +

N∑
n=1

�t‖Un‖2K +
N∑

n=1
�t‖√�tM−1K(Un)Un‖2M

+
N∑

n=1
�t‖√�tPn‖2�B�C (45)

This proofs the theorem. �

The stability analysis of the method BDF1-U0-P1 follows in a straightforward way. Obviously,
this method only makes sense if approximation (13) is used (�= 1, with the previous notation).
The stability results we are going to obtain are

Stability of BDF1-U0-P1:

{Un} ∈ �∞(M) ∩ �2(K), {√�tM−1K(Un)Un} ∈ �2(M)

{�tPn} ∈ �∞(B), {√�t�Pn} ∈ �2(B)

Observe that the pressure stability now is weaker than for the BDF1-U0-P0 method, where the
pressure was extrapolated only up to zero order. Control in �∞(B) is obtained only for {�tPn},
whereas the optimal would be {√�tPn} if �t =O(h2). In general, a better approximation for the
pressure implies less stability (which has to be found either from the use of stabilization methods
or by invoking an inf–sup condition).
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Now, the scheme reads as follows:

�tL(Pn+1 − Pn)= �tDM−1(Fn+1 − GPn)+ DUn (46a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1 (46b)

As above, we will work with an equivalent form of this method, introducing a intermediate velocity:

M
1

�t
(Ũn+1 − Un)+ GPn+1= Fn+1 (47a)

DŨn+1 + �tB(Pn+1 − Pn)= 0 (47b)

M
1

�t
(Un+1 − Ũn+1)+ K(Un+1)Un+1= 0 (47c)

Theorem 2
The following stability estimates hold for the BDF1-U0-P1 method:

max
0�n�N

{‖Un‖2M + ‖�tPn‖2B} +
N∑

n=1
�t{‖Un‖2K + ‖

√
�tM−1K(Un)Un‖2M + ‖

√
�t�Pn‖2B}�C

for all �t>0.

Proof
The proof of this theorem follows the same line than the one of Theorem 1. The only place
where the analysis of this method differs from the previous one is in (44), which now has to be
replaced by

2�tŨn+1 · GPn+1=−2�tPn+1 · DŨn+1= �t2(‖Pn+1‖2B − ‖Pn‖2B + ‖�Pn+1‖2B) (48)

�

Now we will obtain stability results for the BDF1-U1-P0 method. If approximation (13) is not
used, the stability results presented in the following for the pressure disappear. Thus, we will
concentrate only in the case �= 1. The results are:

Stability of BDF1-U1-P0:

{Un} ∈ �∞(M) ∩ �2(K), {�tM−1K(Un)Un} ∈ �∞(M), {√�tPn} ∈ �2(B)

This method reads as follows:

�tLPn+1= �tDM−1(Fn+1 − K(Un)Un)+ DUn (49a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1 (49b)
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The equivalent version that will be analysed is

M
1

�t
(Ũn+1 − Un)+ K(Un)Un + GPn+1= Fn+1 (50a)

DŨn+1 + �tBPn+1= 0 (50b)

M
1

�t
(Un+1 − Ũn+1)+ K(Un+1)Un+1 − K(Un)Un = 0 (50c)

At the first time step the first-order method BDF1-U0-P0 is used for the initialization.

Theorem 3
The following stability estimates hold for the BDF1-U1-P0 method:

max
0�n�N

{‖Un‖2M + ‖�tM−1K(Un)Un‖2M} +
N∑

n=1
�t{‖Un‖2K + ‖

√
�tPn‖2B}�C

for all �t>0.

Proof
After multiplying (50a) by 2�tŨn+1 we get

‖Ũn+1‖2M − ‖Un‖2M + ‖Ũn+1 − Un‖2M + 2�tŨn+1K(Un)Un

+ 2�tŨn+1 · GPn+1= 2�tŨn+1 · Fn+1 (51)

We can reorder (50c) in the form:

Un+1 + �tM−1K(Un+1)Un+1= Ũn+1 + �tM−1K(Un)Un (52)

After squaring (52) with the inner product (·, ·)M, we have

‖Un+1‖2M + 2�t‖Un+1‖2K + ‖�tM−1K(Un+1)Un+1‖2M
=‖Ũn+1‖2M + 2�tŨn+1 · K(Un)Un + ‖�tM−1K(Un)Un‖2M (53)

On the other hand, multiplying (52) by 2�tFn+1, we get

2�tUn+1 · Fn+1 + 2�t2M−1K(Un+1)Un+1 · Fn+1

− 2�t2M−1K(Un)Un · Fn+1= 2�tŨn+1 · Fn+1 (54)

Finally, the term involving the pressure in (51) is bounded using (44). From (51), (53), (54) and
(44) we have

‖Un+1‖2M − ‖Un‖2M + ‖Ũn+1 − Un‖2M + 2�t‖Un+1‖2K + ‖�tM−1K(Un+1)Un+1‖2M
−‖�tM−1K(Un)Un‖2M + 2�t‖√�tPn+1‖2B
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= 2�tUn+1 · Fn+1 + 2�t2M−1K(Un+1)Un+1 · Fn+1 − 2�t2M−1K(Un)Un · Fn+1

��t‖Fn+1‖2−K + �t‖Un+1‖2K + 4��t‖M−1Fn+1‖2M +
�t

2�
‖�tM−1K(Un+1)Un+1‖2M

+ �t

2�
‖�tM−1K(Un)Un‖2M (55)

being � := 2max{t0, �t} and t0>0 is a fixed time value. Summing up from n= 0 to N − 1 (or to
an arbitrary time level), we obtain

‖UN‖2M +
N∑

n=1
‖Ũn − Un−1‖2M +

N∑
n=1

�t‖Un‖2K + ‖�tM−1K(UN )UN‖2M

+
N∑

n=1
�t‖√�tPn‖2B�C +

N∑
n=1

�t

�
‖�tM−1K(Un)Un‖2M (56)

The proof of the stability results required is finished after using the discrete Gronwall inequality
(see [16]) in (56). We stress the fact that �t/�<1. Therefore, the discrete Gronwall lemma can be
applied without any restriction over the time step size. �

The BDF1-U1-P1 scheme is originally written as

�tL(Pn+1 − Pn)= �tDM−1(Fn+1 −M−1K(Un)Un − GPn)+ DUn (57a)

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1 (57b)

The stability analysis of this method differs from the previous one just in the pressure term to be
bounded. Using (48) instead of (40) it is easily obtained that:

Stability of BDF1-U1-P1:

{Un} ∈ �∞(M) ∩ �2(K), {�tM−1K(Un)Un} ∈ �∞(M)

{�tPn} ∈ �∞(B), {√�t�Pn} ∈ �2(B)

7.2. Stability of methods using the Crank–Nicolson time integration

The Crank–Nicolson time integration scheme will be the last to be analysed. We only present the
stability results of the CN-U1-P1 method, since in order to maintain the second-order accuracy of
the Crank–Nicolson scheme the velocity and the pressure need to be extrapolated to first order.
Again, we will consider that approximation (13) is used; otherwise, the pressure bounds presented
next disappear. This method reads as follows:

�tL(Pn+1 − Pn)= �tDM−1(Fn+1 − K(Un−1/2)Un−1/2 − GPn)+ D(Un) (58a)

M
1

�t
(Un+1 − Un)+ K(Un+1/2)Un+1/2 + GPn+1= Fn+1 (58b)
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and its equivalent form to be analysed is

M
1

�t
(Ũn+1 − Un)+ K(Un−1/2)Un−1/2 + GPn+1= Fn+1 (59a)

DŨn+1 + �tBPn+1= 0 (59b)

M
1

�t
(Un+1 − Ũn+1)+ K(Un+1/2)Un+1/2 − K(Un−1/2)Un−1/2= 0 (59c)

At the first time step, we adopt the first-order BDF1-U0-P0 for simplicity. It does not affect the
overall second-order accuracy of the method. In the following setting this initialization is equivalent
to take U−1/2= 0. The stability results we prove here are

Stability of CN-U1-P1:

{Un} ∈ �∞(M) ∩ �2(K), {�tM−1K(Un−1/2)Un−1/2} ∈ �∞(M)

{�tPn} ∈ �∞(B), {√�t�Pn} ∈ �2(B)

These results are summarized in the following theorem.

Theorem 4
The following stability estimates hold for the CN-U1-P1 method

max
0�n�N

{‖Un‖2M + ‖�tM−1K(Un−1/2)Un−1/2‖2M + ‖�tPn‖2B}

+
N∑

n=1
�t{‖Un‖2K + ‖

√
�t�Pn‖2B}�C

for all �t>0.

Proof
The bounds of this theorem can be proved following the same steps as for the proof of the stability
estimates for the BDF1-U1-P0 method and bounding the pressure term in the momentum equation
as for the BDF1-U0-P1 method. �

7.3. Additional pressure stability and pressure stabilization

We can easily see from the previous stability bounds that the inherent pressure stability of VC
methods seems insufficient. We only have some pressure stability under approximation (13). And
even in this case, the stability is under the norm associated with B (a difference between discrete
Laplacians that tends to zero with h). Thus, their behaviour is different from PC methods, which
have a stronger inherent pressure stability [6, 9]. For a first-order splitting error, using PC methods
with approximation (13) we have control over the whole pressure gradient ‖√�t∇ pn+1h ‖0. For
VC methods, the bound for the projection of the pressure gradient onto the finite element space
(weighted with

√
�t) does not appear. Nevertheless, we can recover the control over the whole
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gradient by using the stability provided by the momentum equation (as shown in the following
theorem). Summarizing, even though the stability bounds of the VC methods seem weaker, we
also have stability over the whole pressure gradient (under approximation (13)).

Let us introduce some notation. We will need some projections of ∇ pn+1h with respect to the
L2-inner product

p1: projection onto Vh,0

p2: projection onto (Vh,0)
⊥ ∩Vh

p3: projection onto (Vh)
⊥

and we will denote pi j := pi + p j and ph = p12.
Theorem 5
Assuming a quasi-uniform finite element partition, the following stability estimate holds for the
BDF1-U0-Pp method:

N∑
n=1

�t‖hpn1‖20�C (60)

For the BDF1-U1-Pp and CN-U1-Pp, it holds

N∑
n=1

�t‖hpn1‖0�C (61)

being p= 0 or 1. These bounds hold for all �t>0.

Proof
Let us write inequalities (38a), (50a) and (59a) in an appropriate format in order to analyse the
different methods together. We use the following variational form:

1

�t
(ũn+1h − unh, vh)+ ��(∇un+�−1

h ,∇vh)+ �(un+�−1
h · ∇un+�−1

h , vh)

+ (∇ pn+1h , vh)=〈fn+�, vh〉 (62)

which must hold for all test functions vh ∈Vh,0 and where �= 1 for the BDF1 scheme and �= 1
2

for the CN scheme. Furthermore, �= 0 for the BDF1-U0-Pp and �= 1 for the rest of methods.
Taking pn+11 as test function in (62) and using the standard inverse estimate valid for quasi-uniform
finite element partitions (see [17])

‖pn1‖1�
Cinv

h
‖pn1‖0 (63)

Cinv being a constant uniform with respect to the mesh size, we have

‖pn+11 ‖20 � ‖fn+�‖−1Cinv

h
‖pn+11 ‖0 +

1

2�t
‖ũn+1h − unh‖0‖pn+11 ‖0

+ �(Na‖ũn+�−1
h ‖1 + Nc‖ũn+�−1

h ‖21)
Cinv

h
‖pn+11 ‖0 (64)
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where Na and Nc are the norms of the viscous and convective terms, respectively. That is to say,
we have used the inequalities

�(∇u,∇v) � Na‖u‖1‖v‖1
(u · ∇u, v) � Nc‖u‖21‖v‖1

valid for any functions u, v∈H1
0(�), where ‖ · ‖1 is the norm of this space. Likewise, ‖ · ‖−1

denotes the norm in H−1(�).
We can easily get the bounds stated in the theorem from inequality (64) bounding the right-hand

side terms using the stability bounds obtained in Theorems 1–4. �

Let us conclude by showing which is the additional stability introduced by pressure stabilization
only (not by convection stabilization). This situation makes sense for flows dominated by viscosity,
for which (27) yields �= O(h2). Using BDF1, the method reads

(�tDM−1G− Spp)P
n+1= �tDM−1(Fn+1 − K(Ũn+1

q )Ũn+1
q )+ DUn − SpyYn

M
1

�t
(Un+1 − Un)+ K(Un+1)Un+1 + GPn+1= Fn+1

MYn+1 − GPn+1= 0

with the notation introduced earlier. Of course, approximation (13) can now be applied. On top of
the stability bounds given by Theorems 1–5, we now have the following.

Theorem 6
Assume that �= O(h2). Then, the pressure satisfies the stability estimate:

N∑
n=1

�t‖h∇ pnh‖0�C

8. NUMERICAL TESTS

In this section we present some numerical results to test the VC and predictor–corrector schemes
designed in this paper. In all cases we use approximation (13). Our reference will be the solution
of the monolithic problem, that is, the coupled calculation of the velocity and the pressure. We also
compare the behaviour of these methods with the stabilized PC and predictor–corrector systems
studied in [6, 9], another kind of pressure segregation methods with a similar computational cost.
The results shown along this section are obtained with the stabilized versions of the methods using
OSS introduced in Section 5. This has allowed us to use equal velocity–pressure interpolation.
In particular, we have considered linear elements. Both for PC and VC methods only second-
order splitting error methods have been analysed, due to their clear superiority in comparison to
first-order methods (see [9]) without significant additional computational cost. The only possible
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Figure 1. Convergence test.

reason that would (hardly) justify PC methods with a first-order splitting error is their inherent
stability. However, this inherent stability is weaker in the case of VC. In any case, the introduction
of consistent stabilization techniques, such as OSS, makes this stability unnecessary, improving
the accuracy.

The numerical examples presented in this section are the same as in [9]. Likewise, very similar
comments apply.

8.1. Convergence test

The first example we consider is a simple convergence test whose goal is to check numerically the
rate of convergence in time for some of the numerical methods described.

The computational domain is the unit square, discretized using a uniform triangular mesh of
11× 11 nodal points (200 triangles). The boundary and initial conditions and the force term are
prescribed so that the analytic solution is u= (y,−x) sin(�t/10) exp(t/25) and p= 0. Note that
the exact solution belongs to the finite element space, and thus the only source of numerical error
is the time approximation.

Results are shown in Figure 1. The error E is measured in the �2 norm of the sequence
{un − u(tn)}. It is seen that all the methods show the expected rate of convergence. This is
particularly relevant for the predictor–corrector schemes, whose error is affected by the convergence
tolerance adopted in the iterative loop of each time step.

8.2. Flow in a cavity

In this second example, we solve the classical cavity flow problem at a Reynolds number Re= 100.
The computational domain is the unit square, discretized using a mesh of 21× 21 nodal points
(400 triangles). The velocity is fixed to zero everywhere except on the top boundary, where it is
prescribed to (1,0).
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Figure 2. Evolution towards the steady state for the cavity flow problem using
monolithic and velocity-correction schemes.

Even though the solution in this simple example is stationary, we obtain it by stepping in time.
The goal of this test is precisely to check the properties of the schemes proposed for the long-term
time integration of stationary solutions (very often difficult to obtain in a stationary calculation)
and, particularly, their numerical dissipation. The time step employed is �t = 1.

Figure 2 shows the evolution towards the steady-state case for VC methods compared with
the monolithic one. We take a VC method with a second-order splitting error (p= q = 1). It is
observed that the VC methods reach the steady-state case slower than the monolithic system, which
is more dissipative.

The VC predictor–corrector method, as expected, follows very closely the plot of the monolithic
system. Furthermore, when the residual reaches the tolerance of the predictor–corrector loop, the
plots of the VC predictor–corrector methods detaches from the monolithic one, tending slower to
the steady-state case, as it could be expected.

On the other hand, the use of the consistent or lumped mass matrix seems that does not affect
essentially the results obtained.

In Figure 3, the VC method is compared to its dual PC method. The original fractional step
method with, for simplicity, BDF1 for the time integration and a pth order pressure extrapolation
is (see [9] for details)

M
1

�t
(Ũ

n+1 − Un)+ K(Ũ
n+1

)Ũ
n+1 + GP̃n+1p = Fn+1

�tL(Pn+1 − P̃np)= �tDŨ
n+1

M
1

�t
(Un+1 − Ũ

n+1
)+ G(Pn+1 − P̃n+1p )= 0

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:351–382
DOI: 10.1002/fld



378 S. BADIA AND R. CODINA

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

5 10 15 20 25 30 35 40 45 50

lo
g(

R
es

id
ua

l)

time

Velocity Correction
Pressure Correction

Velocity Correction Predictor C. tol 1e-4
Velocity Correction Predictor C. tol 1e-5

Pressure Correction Predictor C. tol 1e-4
Pressure Correction Predictor C. tol 1e-5

Figure 3. Evolution towards the steady state for the cavity flow problem using
velocity and pressure-correction schemes.

whereas the associated predictor–corrector method using a single loop is

M
1

�t
(Un+1,i+1 − Un)+ K(Un+1,i )Un+1,i+1 + GPn+1,i = Fn+1

�tL(Pn+1,i+1 − Pn+1,i )=D(Un+1,i+1)

These two methods are the predictor–corrector counterparts of the VC methods given by (16) (with
k= 1) and (21).

The asymptotic behaviour of both the methods displayed in Figure 3 is very similar. However,
their predictor–corrector versions give very different plots. PC predictor–corrector methods have a
weird behaviour when tending to the steady-state case. For VC predictor–corrector methods better
convergence is attained. The use of a consistent mass matrix or a diagonal mass matrix obtained
from a nodal quadrature leads to very similar results. For this reason, only the results obtained
with the consistent mass matrix have been included.

Concerning the convergence of the methods, in Figures 4–6 we plot the number of itera-
tion performed versus time step in order to compare VC and PC methods (with a maximum
of 10 iterations allowed). These iterations deal with the nonlinearity of the convective term for
VC and PC methods as well as with the convergence to the monolithic system for predictor–
corrector schemes. For this specific test, VC schemes reach convergence slightly faster than
PC schemes in all cases. Due to the fact that both PC and VC methods have a very similar
computational cost per iteration (in both cases we have to solve a Poisson equation for the
pressure and a momentum equation for the velocity) and the CPU time used by both meth-
ods is proportional to the number of iterations, VC turns out to be cheaper for this particular
example.
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8.3. Flow over a cylinder

The last example is also a classical benchmark, namely, the flow over a cylinder. The computational
domain is �̄=[0, 16]× [0, 8]\D, with the cylinder D of diameter 1 and centred at (4, 4). The
velocity at x = 0 is prescribed to (1, 0), whereas at y= 0 and 8 the y-velocity component is
prescribed to 0 and the x-component is left free. The outflow (where both the x- and y-components
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Figure 6. Number of iterations per time step using different velocity and pressure-correction schemes.
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Figure 7. Temporal evolution of the y-velocity component at the control point.

are free) is x = 16. The Reynolds number is 100, based on the cylinder diameter and the prescribed
inflow velocity. The finite element mesh employed consists of 3604 linear triangles, with 1902
nodal points. This example has been used in [9] to analyse PC methods in time. Here, we try to
show the same case with VC methods. Only second-order schemes have been considered.
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The evolution of the y-velocity component at the control point located at (6,4) is shown in
Figure 7. The time step size used in all the cases is �t = 0.05. A maximum of only five iterations
has been permitted. Similar results to those of the PC methods have been obtained (see [9]). Again,
the predictor–corrector method lays between the monolithic and VC method.

9. CONCLUSIONS

The new types of velocity-correction and predictor–corrector methods presented in this paper and
obtained at the discrete level from a DPPE monolithic system are appropriate methods for the
simulation of flow problems, avoiding the problems that arise when using a pressure Poisson
equation obtained at the continuous level. This requires a finite element approximation to H2(�),
which is avoided by our purely algebraic approach.

The velocity-correction methods proposed herein have a behaviour similar to the widely used
pressure-correction methods. Moreover, in both cases we observe that third-order methods (in
time) become conditionally stable. This is a somehow surprising result, because the perturbation
introduced by the splitting is different in both cases.

A nice feature of the DPPE monolithic system is the fact that velocity-correction predictor–
corrector schemes arise naturally. We have compared these new schemes to predictor–corrector
schemes motivated from pressure-correction methods. Numerical experimentation shows that these
new methods exhibit a similar or, in most cases, better behaviour.

From the numerical analysis it seems that the inherent pressure stability of velocity-correction
schemes is weaker than the one of pressure-correction methods. Whereas for first-order pressure-
correction methods a stability bound for the pressure gradient can be obtained (under some mild
assumptions), only part of this term is controlled using velocity-correction methods. Nevertheless,
we can recover control over the rest of the pressure gradient from the momentum equation. Using
OSS stabilized versions of these schemes have been designed and their enhanced stability properties
have been proved.
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